

Hadron production experiments to constrain the neutrino beam

Alexander Korzenev, University of Geneva

> Neutrino 2014 Boston USA, June 6

- Why hadron production measurements?
- Approaches for the v flux constraint:
 - Re-weighting at the interaction vertex
 - The actual target measurements

Motivation for an ancillary hadron production experiment

- Uncertainty on the neutrino flux is a dominant contribution to systematics of measurements: 10 – 20 %
- Uncertainty on hadronic interactions is dominant contribution to the flux uncertainty

Few examples

Hadron production experiments

neutrino experiments

HARP, CERN-PS214 1.5-15 GeV beam (Mini-, Sci-, Micro-)BooNE at Fermilab K2K (KEK to Super-Kamiokande)

NA20 & SPY/NA56, SPS 400-450 GeV beam WANF (NOMAD, CHORUS) CNGS (OPERA, ICARUS)

NA49, CERN-SPS 160 GeV beam

MIPP, FNAL-E907 120 GeV beam NuMI beamline in Fermilab (MINOS, MINERVA, NOVA)

NA61/SHINE CERN-SPS 13-400 GeV beam T2K (JPARC to Super-Kamiokande)
NuMI (MINOS+,MINERvA, NOvA)
LBNE, LBNO, T2HK

Normally results of several hadron production experiments are used

Approaches for the v flux constraint

- 1) Traditional: re-weighting at the interaction vertex
 - Model dependent: x_F scaling assumed for extrapolation
 - Results of many hadron production experiments are used
- 2) The actual target measurements
 - Hadron yields on a surface of target
 - Never used so far
 - HARP, NA61, MIPP
- 3) Additional constraints come from
 - Muon monitor measurements
 - In situ techniques (direct measurement of the ν flux)

Approaches for the v flux constraint

- 1) Traditional: re-weighting at the interaction vertex
 - Model dependent: x_F scaling assumed for extrapolation
 - Results of many hadron production experiments are used
- 2) The actual target measurements
 - Hadron yields on a surface of target
 - Never used so far
 - HARP, NA61, MIPP
- 3) Additional constraints come from
 - Muon monitor measurements
 - In situ techniques (direct measurement of the ν flux)

MINERvA's posters:

- Low-nu flux technique, L.Ren
- Flux constrain by ve scat., J.Park

Approaches for the v flux constraint

- 1) Traditional: re-weighting at the interaction vertex
 - Model dependent: x_F scaling assumed for extrapolation
 - Results of many hadron production experiments are used
- 2) The actual target measurements
 - Hadron yields on a surface of target
 - Never used so far
 - HARP, NA61, MIPP
- 3) Additional constraints come from
 - Muon monitor measurements
 - In situ techniques (direct measurement of the v flux)
 - **3**

One can feel safe if all methods give consistent results!

Data for beamline of T2K

- NA61/SHINE approved in 2007
- Successor of NA49, H2 beamline of CERN SPS
- Pilot run with pC data at 31 GeV in 2007. Main dataset in 2009 and 2010
- New results (run 2009) on π^{\pm} , K^{\pm} , p, Λ , K^{0}_{S}
- Thin and replica target measurements

Data for NuMI beamline in #Fermilab

- NA49 data to constrain the v flux
- MIPP: approved in 2001, datataking in 2005 and 2006
 - Ratio of hadron cross sections π^-/π^+ , K^-/K^+ , π/K released in 2007
 - New results on π^{\pm} production yields off NuMI target: arXiv:1404.5882
- Extensive program is foreseen in NA61 (pilot data at 120 GeV in 2012)

Traditional approach: re-weighting at the interaction vertex

- NA61 data for the T2K simulation
- New results of NA61
- NA49 & MIPP data for the NuMI simulation

NA61 data in the T2K experiment

Red: parent produced in target Blue: parent produced outside the target

Hadronic interaction in the target are modeled with FLUKA, outside the target with GEANT3 (GCALOR)

Main set of hadron production data

Major part of the T2K phase space	Experiment	Beam p[GeV/c]	Target	Particle
Major part of the 1211 phase space	NA61/SHINE	31	С	π^{\pm} , K [±] , p
For forward kaons	Eichten <i>et al.</i>	24	Be, Al,	p, π [±] , K ⁺
	Allaby et al.	19.2	Be, Al,	p, π [±] , K [±]
For tertiary pions	E910	6.4-17.5	Be	π^{\pm}

- Interaction chain for hadrons is stored, to be weighted later with real measurements
- Tuning of tertiary pions requires extrapolation from NA61 data
 - Extrapolation to different incident nucleon momenta is done assuming Feynman scaling $(x_{E}=p_{I}/p_{I}^{max})$
 - Extrapolation from carbon to aluminum using

$$E\frac{d^3\sigma(A_1)}{dp^3} = \left[\frac{A_1}{A_0}\right]^{\alpha(x_F, p_T)} E\frac{d^3\sigma(A_0)}{dp^3}$$

Phase space of hadrons contributing to the predicted v flux at SK (250 kA)

Summary of data collected by **NA61** for T2K

beam	target	year	stat x10 ⁶	Status of analysis	The T2K beam MC	
	thin target	2007	0.7	published: π^{\pm} , K^{+} , K^{0}_{S} , Λ	is used	
protons at 31	2cm (0.04λ _ι)	2009	5.4	prelim: π^{\pm} , K^{\pm} , p, K^{0}_{S} , Λ	to be used in 2014	
GeV/c	the T2K	2007	0.2	published: π [±]	method developed	
	replica target 90 cm (1.9λ _I)	2009	2.8	to be released in 2014	-	
		2010	~10	calibration	-	10

Tuning of v_u flux using NA61 spectra

Pilot data of NA61 (2007) have been used

Pion multiplicity re-weighing has the largest effect at low energies, while the kaon multiplicity re-weighting is important at high energies.

Total flux uncertainty is dominated by the hadron interaction uncertainties

New NA61 measurements for T2K at 31GeV

- New NA61 results based on data 2009. Precision improved by a factor 2-3 as compared to the pilot data 2007 (used so far by T2K)
- Typical uncertainty for regions which are important for ν flux is ~4%
- Recent versions of FTF_BIC describe data reasonably

New NA61 measurements for T2K at 31GeV

 $240 < \theta < 300 \text{ mrad}$

p [GeV/c]

- New NA61 results based on data 2009. Precision improved by a factor 2-3 as compared to the pilot data 2007 (used so far by T2K)
- Typical uncertainty for regions which are important

300 < θ < 360 mrad

FTF BIC - G495

FTF_BIC - G496

FTF BIC - G410

OGSP BERT - G410

p [SeV/c]

Recent versions of FTF_BIC describe data reason

Poster by M.Posiadala:

• π^{\pm} multiplicities from p-C interactions at 31 GeV for T2K

New NA61 measurements for T2K at 31GeV

- New NA61 results based on data 2009. Precision improved by a factor 2-3 as compared to the pilot data 2007 (used so far by T2K)
- Typical uncertainty in a central region is ~15%

--- FTF_BIC - G495

--- FTF BIC - G496

— FTF BIC - G410

p [GeV/c]

QGSP BERT - G410

Recent versions of FTF_BIC describe data reasonably

--- FTF_BIC - G495 --- FTF_BIC - G496

p [GeV/c]

-FTF_BIC - G410

QGSP_BERT - G410

NA49 data for the NuMI simulation

- Cascade leading to v is tabulated at generation. Save kinematics & material
- In analysis, interactions reweighted as σ(data)/σ(MC)
- NA49 measurements at 158 GeV: p+C → (π^{\pm}, K^{\pm}, p) +X
- MIPP measurements at 120 GeV: ratio of cross sections K/π

NA49 data for the NuMI simulation

- FLUKA is used to translate NA49
 measurements to proton energies between
 12 and 120 GeV
- Interactions not constrained by the NA49 data are predicted using FTFP
- Effect of corrections is < 5% at peak energy
- Flux uncertainty is a dominant contribution to the cross section systematics
- Hadron interactions dominates in the systematics of the flux

The actual target measurements: parametrization of hadron yields outside the target

- Results of NA61 for T2K
- New results of MIPP for NuMI

The actual target measurements

Measurement of hadron yields at the target surface (no matter how they are produced)

Graphite rod 90 cm long and \emptyset = 2.6 cm. Replica target was delivered to CERN to be used in NA61

Ancillary experiment: NA61/SHINE in CERN

Canister 90 cm long and $\emptyset = 3$ cm. 47 graphite segments soldered to water cooling line

Ancillary experiment: MIPP in Fermilab

The actual target measurements

Measurement of hadron yields at the target surface (no matter how they are produced)

Output Se-window

Aluminum casing

NuMI

Fermilab

Tanget Canister
(Water cooled)

About 40% of neutrinos are produced from hadrons which were created in secondary interactions

Ø = 3 cm. 47 graphitesegments soldered to water cooling line

target was delivered to CERN to be used in NAOL

Graphite rod 90 cm long and

Ancillary experiment: NA61/SHINE in CERN

Ancillary experiment: MIPP in Fermilab

NA61 data for the T2K simulation

- Hadron multiplicities are parametrized at the target surface (no interaction vertex reconstruction)
- Model dependence of the v flux prediction is reduced down to 10% as compared to 40% in the standard approach
- Analysis in bins of (p, θ, z)
- Target is subdivided into 6 z-bins
- Re-weighting multiplicities of hadrons exiting the target in the T2K beam simulation
- Method is published: NIM A701(2013)99
 - π^{\pm} analysis based on pilot data 2007

Summary of data collected by **NA61** for T2K

	Committee of Grant Compared by Harton 1210					
	beam	target	year	stat.x10 ⁶	Status of analysis	The T2K beam MC
		thin target	2007	0.7	published: π^{\pm} , K^{+} , K^{0}_{S} , Λ	is used
	protons at 31	2cm (0.04λ _ι)	2009	5.4	prelim: π^{\pm} , K^{\pm} , p, K_{s}^{0} , Λ	to be used by June
	GeV/c	the T2K	2007	0.2	published: π [±]	method developed
		replica target 90 cm (1.9λ _ι)	2009	2.8	to be released in 2014	-
			2010	~10	under calibration	-

NA61 data for the T2K simulation

- Hadron multiplicities are parametrized at the target surface (no interaction vertex reconstruction)
- Model dependence of the v flux prediction is reduced down to 10% as compared to 40% in the standard approach
- Analysis in bins of (p, θ, z)
- Target is subdivided into 6 z-bins
- Re-weighting multiplicities of hadrons exiting the target in the T2K beam simulation
- Method is published: NIM A701(2013)99
 - π^{\pm} analysis based on pilot data 2007

Summary of data collected by NA61 for

	beam	target	year	stat.x10 ⁶	Status of analysis	 ν flux to be calculated
		thin target 2cm (0.04λ _ι)	2007	0.7	published: π^{\pm} , K^{+} , K^{0}_{S} , Λ	dsed
	protons at 31 GeV/c		2009	5.4	prelim: π^{\pm} , K^{\pm} , p, K_{s}^{0} , Λ	e used by June
		the T2K replica target 90 cm (1.9λ _ι)	2007	0.2	published: π^{\pm}	method developed
			2009	2.8	to be released in 2014	-
			2010	~10	under calibration	-

poster of A.Haesler

Spectra of π^+

NA61 data for the T2K simulation

 Yields are measured at the target surface

$$w(p,\theta,z) = \frac{Data(p,\theta,z)}{FLUKA(p,\theta,z)}$$

- Good agreement between the traditional and the replica target methods (π^{\pm} only)
- Statistical uncertainty is dominant
- Ultimate precision will come with the analysis of data 2009 and 2010

- 1.43x10⁶ protons at 120 GeV on an actual NuMI target
- Measurement of the π^{\pm} yield in ~125 bins of (p_z, p_T) across 2 orders of magnitude in momentum
- There is no binning in z
- For PID TPC (dE/dx) and RICH have been used
- Combined statistical and systematic errors are <10% in nearly all bins

- 1.43x10⁶ protons at 120 GeV on an actual NuMI target
- Measurement of the π^{\pm} yield in ~125 bins of (p_z, p_T) across 2 orders of magnitude in momentum
- There is no binning in z
- For PID TPC (dE/dx) and RICH have been used
- Combined statistical and systematic errors are <10% in nearly all bins

- 1.43x10⁶ protons at 120 GeV on an actual NuMI target
- Measurement of the π^{\pm} yield in ~125 bins of (p_z,p_T) across 2 orders of magnitude in momentum
- There is no binning in z
- For PID TPC (dE/dx) and RICH have been used
- Combined statistical and systematic errors are <10% in nearly all bins
- Data imply that MCs tend to overestimate pion yields at higher p and under-estimate at the focusing peak

- 1.43x10⁶ protons at 120 GeV on an actual NuMI target
- Measurement of the π^{\pm} yield in ~125 bins of (p_z, p_T) across 2 orders of magnitude in momentum
- There is no binning in z
- For PID TPC (dE/dx) and RICH have been used
- Combined statistical and systematic errors are <10% in nearly all bins
- Data imply that MCs tend to overestimate pion yields at higher p and under-estimate at the focusing peak
- These data may be used to re-evaluate MC predictions of the NuMI flux and reduce the overall systematic uncertainty

Conclusion

- Hadron production measurement is a cornerstone of the modern v physics
- Traditional approach for the v flux calculation: re-weighting the parent hadron multiplicity at the interaction vertex
 - NA61 data for T2K at 31 GeV, also for NuMI at 120 GeV
 - NA49 data for NuMI at 158 GeV (scaled to 120 GeV)
 - ◆ Typical neutrino flux uncertainty is ~10%
- The actual target measurements:
 - NA61 data for T2K at 31 GeV
 - MIPP data for NuMI at 120 GeV
 - Reduction of model dependent uncertainties
- Precision measurements of hadron yields can be really difficult. Period from data taking to publication is typically ≥ 4 years. An ancillary experiment as much complicated as the main one!
- Additional flux constraints using other methods could be also useful

backup

Conventional accelerator v-beam

Hadroproduction measurement $p(\pi) + A \rightarrow h + X$

Neutrino Factory

MC generators

- 1.43x10⁶ protons at 120 GeV on an actual NuMI target
- Measurement of the π^{\pm} yield in ~125 bins of (p_z, p_T) across 2 orders of magnitude in momentum
- For PID TPC (dE/dx) and RICH have been used
- Combined statistical and systematic errors are <10% in nearly all bins
- Data imply that MCs tend to overestimate pion yields at higher momenta
- Preliminary fits of empirical function used by NuMI experiments to parametrize hadron production

$$\frac{d^2N}{dp_Z dp_T} = p_{\text{inc}}(A + Bp_T)e^{-Cp_T^{3/2}}$$

$$A = a_1(1-x)^{a_2}(1+a_3x)x^{-a_4}$$

$$B = b_1(1-x)^{b_2}(1+b_3x)x^{-b_4}$$

$$C = -c_1/x^c + c_3 \text{ for } x < 0.22$$

$$C = c_1/e^{(x+c_2)c_3+c_4x+c_5} \text{ for } x > 0.22$$

- 1.43x10⁶ protons at 120 GeV on an actual NuMI target
- Measurement of the π^{\pm} yield in ~125 bins of (p_z, p_T) across 2 orders of magnitude in momentum
- For PID TPC (dE/dx) and RICH have been used
- Combined statistical and systematic errors are <10% in nearly all bins
- Data imply that MCs tend to overestimate pion yields at higher momenta
- Preliminary fits of empirical function used by NuMI experiments to parametrize hadron production

$$\frac{d^2N}{dp_Z dp_T} = p_{\text{inc}}(A + Bp_T)e^{-Cp_T^{3/2}}$$

$$A = a_1(1-x)^{a_2}(1+a_3x)x^{-a_4}$$

$$B = b_1(1-x)^{b_2}(1+b_3x)x^{-b_4}$$

$$C = -c_1/x^c + c_3 \text{ for } x < 0.22$$

$$C = c_1/e^{(x+c_2)c_3+c_4x+c_5} \text{ for } x > 0.22$$

- 1.43x10⁶ protons at 120 GeV on an actual NuMI target
- Measurement of the π^{\pm} yield in ~125 bins of (p_z, p_T) across 2 orders of magnitude in momentum
- For PID TPC (dE/dx) and RICH have been used
- Combined statistical and systematic errors are <10% in nearly all bins
- Data imply that MCs tend to overestimate pion yields at higher momenta
- Preliminary fits of empirical function used by NuMI experiments to parametrize hadron production
- These data may be used to re-weight MC predictions of the NuMI flux and reduce the overall systematic uncertainty

Direct measurement of v flux with $ve \rightarrow ve$

Well known reaction

$$V_{\mu} + e^{-} \rightarrow V_{\mu} + e^{-}$$

$$\overline{V}_{\mu} + e^{-} \rightarrow \overline{V}_{\mu} + e^{-}$$

$$e^{-}$$

$$V_{\mu} \downarrow Z^{0}$$

$$e^{-}$$

- Very small cross section (~1/2000 of v-nucleon scattering)
- Very forward electron final state
- Background reactions

$$v_e + n \rightarrow e^- + p$$
 $v_\mu A \rightarrow v_\mu A \pi^0$
 $\overline{v}_e + p \rightarrow e^+ + n$ $v_\mu N \rightarrow v_\mu N \pi^0$

- ve events (LE) after all corrections:
 - 123.8±17.0(stat)±9.1(syst)
- Prediction from simulation:
 - 147.5±22.9(flux)
- In both cases precision is ~15%
- Similar signal/background rate for ME as for LE
 - Expected stat. error ~2%
 - Syst. error 7% → 5%

Very forward single electron final state

New NA61 measurements for T2K (pC@31GeV/c)

- New NA61 results based on data 2009. Precision improved by a factor 2-3 as compared to the pilot data 2007 (used so far by T2K)
- None of models can reasonably describe proton's spectra
- Recent versions of FTF_BIC describe K0S spectra reasonably

Update on physics lists

Composition of physics lists for proton interaction as a function of the energy

Now with VMC 2.15 (Geant4.10)

BIC: Binary Cascade Model

Bertini: Bertini Model FTF: Fritiof Model

QGS: Quark Gluon String

LHEP: Low and High Energy Parametrized REMOVED

-P: Precoumpound

-B: BIC

NA56/SPY, Secondary Particle Yields

- Goal: understanding and planing of v oscillation experiments
- CERN-SPSLC/96-01
- H6 beamline of CERN SPS
- PID by TOF1-5, Cherenkov counters C0-C2 + CEDAR and Hadron Calorimeter

- 450 GeV/c protons interact with Be target
- Production angle up to 30 mrad
- Yields of π^{\pm} , K^{\pm} , p and \overline{p} have been studied
- Secondary momentum range 7-135 GeV/c (0.02< $x_{\rm E}$ <0.3) and $p_{\rm T}$ <600 MeV/c
- Experimental accuracy on yields 5-10%, for production ratios 3%
- Dependence of yields on the target thickness and shape have been studied
- Complementary to NA20 (Atherton et al.) measurements at 400 GeV/c and $0.15 < x_F < 0.75$

G.Ambrosini et al., Eur.Phys.J.C10(1999)605; Phys.Lett.B420(1998)225

SPY data in the NOMAD/WANF experiment

Towards

CHORUS &

NOMAD

FLUKA 2000 was used to calculate rates

 Rates were modified to to account for crosssection measured by SPY and NA20

• Weight=Data/FLUKA for bin of p (and θ if posib.)...

Histo is FLUKA, points from SPY & NA20

Overall flux uncertainty 8% for v_{μ} and v_{e} ,

10% for $\nu_{\overline{\mu}}$ and 12% for $\nu_{\overline{e}}$

(NOMAD) P.Astier et al., NIM A515(2003)800 G.Collazuol et al., NIM A449(2000)609

Ratios of charged hadrons from MIPP

- Measurements for MINOS/ 120 GeV/c
 - Thin carbon target
 - NuMI replica target
- Preliminary results for ratios:

 π^{-}/π^{+} , K⁺/ π^{+} , K⁻/K⁺ and K⁻/ π^{-} H.Meyer, Nucl.Phys.B187(2009)197

- The only experiment nearby in phase space is NA49 (thin target, 158 GeV/c beam)
- Reasonable agreement of MIPP with NA49 and the MINOS spectrum fit has been found for p_{sec}<40 GeV/c
- BMPT parametrization (400 GeV/c protons on Be target) fits well the data

New results: Forward neutron production in MIPP, published in Phys.Rev.D83(2011)012002

A.Lebedev, Ph.D. Thesis, Harvard U. (2007)

HARP data in the K2K experiment

- K2K measured v_{μ} disappearance for θ_{23} , Δm_{23}^{2}
- v_{μ} beam was produced by 12.9 GeV/c protons scattered off the Aluminum target

- Measurement of $d^2\sigma^{\pi^+}/dpd\Omega$
- Al target of 5% nuclear interaction length
- 0.21 M reconstructed secondary tracks in the forward spectrometer were used
- Overall scale error was ~6% and point-to-point error ~8.2%
- Sanford-Wang parametr. applied $(\chi^2/ndf=305/41)$

$$\frac{d^{2}}{dp \, d \, \Omega}(p, \theta) = c_{1} \, p^{c2} \left(1 - \frac{p}{p_{beam}}\right) \exp\left[-c_{3} \frac{p^{c4}}{p_{beam}^{c5}} - c_{6} \theta \left(p - c_{7} \, p_{beam} \cos^{c8} \theta\right)\right]$$

Using HARP results the ν flux uncertainty to the far-to-near ratio in K2K was reduced by about factor 2: $5.1\% \rightarrow 2.9\%$

(K2K coll.) M.H.Ahn et al., Phys.Rev.D74(2006)072003

M.G. Catanesi et al., Nucl.Phys.B732(2006)1

HARP data in the MiniBooNE experiment

• MiniBooNE studied v_a appearance at $\Delta m^2 \sim 1 eV^2$

 v_{μ} beam was produced by 8.9 GeV/c protons incident on a Be target 71 cm long

- Measurement of $d^2\sigma^{\pi^+}/dpd\Omega$
- Be target of 5% nuclear interaction length
- 96 k reconstructed secondary tracks in the forward spectrometer were used
- Overall scale uncertainty was ~4.9% and point-topoint error ~9.8% (stat.+syst.)
- Sanford-Wang paramet. applied $(\chi^2/ndf=117/70)$
- HARP results agree well with rescaled ones of BNL-E910 (6.4 & 12.3

GeV/c). Both were used to tune BNB beam MC

nded tion (Fig. 2)

Phys.Rev.Lett.98(2007)231801[©]

Phys.Rev.D79(2009)072002

HARP Kinematic Coverage

π⁺ flux simulatio
in MiniBooN

250

200

150

0

1 2 3 4 5 6 7 8

p. (GeV/c)

M.G. Catanesi et al., Eur.Phys.J.C52(2007)29

HARP data & Neutrino Factory

 π^{\pm} production in proton-(Be,C,Al,Cu,Sn,Ta,Pb) collision 3< $p_{\rm beam}$ <12.9 GeV/c: *Phys.Rev.C77(2008)055207*

Goal: determination of the optimal beam energy for the

proton driver

Simplified evaluation for the tantalum target

Different symbols correspond to different θ integration range

The optimum yield is between 5 and 8 GeV/c

J.Strait et al., Phys.Rev.Spec.13(2010)111001

- Double-differential cross sections were weighted by the acceptance of the front-end channel and integrated over the phase space of HARP
- Beam energy giving the largest muon yield at constant beam power is ~7 GeV
- No significant dependence on whether HARP or HARP-CDP input was used

FIG. 9. Beam-power normalized muon yield at the end of the NF/MC front-end channel, relative to that at $T_{\text{beam}} = 4.1 \text{ GeV}$.

Measurements for the NuMI target

- The goal is similar to the one for T2K (cross section + replica target)
- LBNE, MINOS(+), NOVA, MINERVA
- US group has been approved for limited membership at the beginning of 2012. Full members in 2014
- 22 physicists from 8 US institutions
- Pilot run in summer 2012
 - 120 GeV/c proton beam + C target
 - Non-standard magnet configuration
 - 3.5 millions triggers recorded
 - Calibration is in progress
- DOE proposal to be submitted
 - Upgrade of electronics (Pittsburgh)
 - Forward tracking (Colorado)
 - Request for 3-4 weeks of beam time
 (60, 90, 120 GeV/c, 3-4 targets)

Clamping Plates

IHEP Design

NuMI target

